1

Chemical compatibility of CHROMAFIL®

Chemical compatibility of filter materials

The chemical compatibility depends on several parameters such as time, pressure, temperature and concentration. In most cases, CHROMAFIL® filters will have only short contact with a solvent. In these cases they may be used despite of limited compatibility.

For example, a PTFE filter with PP housing does not liberate any UV-detectable substances during filtration of 5 mL THF, although PP shows only limited resistance towards THF.

The following table lists the chemical compatibility of our CHROMAFIL® materials.

Solvent	Material											
	MV	CA	RC	PA	PTFE	H-PTFE	PVDF	PES	PET	GF	IC	PP
Acetaldehyde	_	-	+	0	+	+	+		+	+		0
Acetic acid, 100 %	_	_	_	_	+	+	+	+	+	+		+
Acetone	_	_	+	+	+	+	_	_	+	+		+
Acetonitrile	_	_	+	+	+	+	+	+	+	+		+
Ammonia, 25 %	_	_	0	_	+	+	+	+	0	+	_	+
Benzene	+	+	+	+	+	+	0	+	+	+		0
n-Butanol	+	+	+	0	+	+	+	+	+	+		+
Cyclohexane	+	+	+	0	+	+	+	+	+	+		+
Dichloromethane	+	_	+	-	+	+	+	-	+	+		-
Diethyl ether	0	0	+	+	+	+	+	+	+	+		0
Dimethylformamide	_	_	0	+	+	+	_	-	+	+		+
1,4-Dioxane	_	_	+	+	+	+	0	_	+	+		0
Ethanol	_	+	+	+	+	+	+	+	+	+		+
Ethyl acetate	_	_	+	+	+	+	+	+	+	+		0
Ethylene glycol	0	0	+	+	+	+	+	+	+	+		+
Formic acid, 100 %	+	_	0	_	+	+	+	+	0	+		+
Hydrochloric acid, 30 %	_	_	_	_	+	+	+	+	_	+	_	+
Methanol	_	_	+	+	+	+	+	+	+	+		+
Nitric acid, 65 %	_	_	_	_	0	+	0		0	+	_	_
Oxalic acid, 10 % aqueous	+	_	+	-	+	+	+		+	+		+
Petroleum ether	+	+	+	+	+	+	+	+	+	+		+
Phosphoric acid, 80 %	-	_	0	_	+	+	0	••••••	+	+	_	+
Potassium hydroxide, 1 mol/L	_	_	0	+	+	+	0	0	0	+	+	+
2-Propanol	+	+	+	+	+	+	+	+	+	+		+
Sodium hydroxide, 1 mol/L	_	_	0	+	+	+	0	0	0	0	+	+
Tetrachloromethane	+	_	+	+	+	+	0		+	+		0
Tetrahydrofuran	<u> </u>	-	+	0	+	+	+	-	+	+		0
Toluene	+	_	+	+	+	+	+	+	+	+		0
Trichloroethene	+	+	+	0	+	+	+	0	+	+		0
Trichloromethane (chloroform)	+		+	-	+	+	+	-	+	+		_
Urea	+	+	+	+	+	+	+		+	+		+
Water	+	+	+	+	+	+	+	+	+	+	+	+
Xylene	+	+	+	+	+	•••••	0	0	+	+		0

Data not guaranteed.

+ resistant, - not resistant, O limited resistance

Material

Membranes

MV = cellulose mixed esters, CA = cellulose acetate, RC = regenerated cellulose, PA = polyamide,
PTFE = polytetrafluoroethylene, H-PTFE = hydrophilized polytetrafluoroethylene, PVDF = polyvinylidene difluoride, PES = polyethersulfone,

 $\label{eq:petas} \mbox{PET} = \mbox{polyester, GF} = \mbox{glass fiber, IC} = \mbox{special filter for ion chromatography}$

Housing material

PP = polypropylene